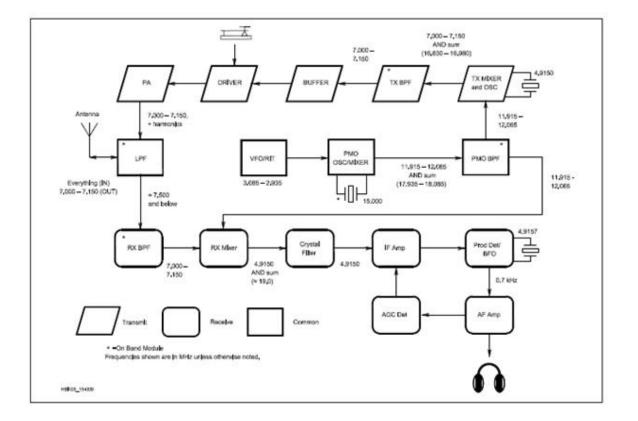
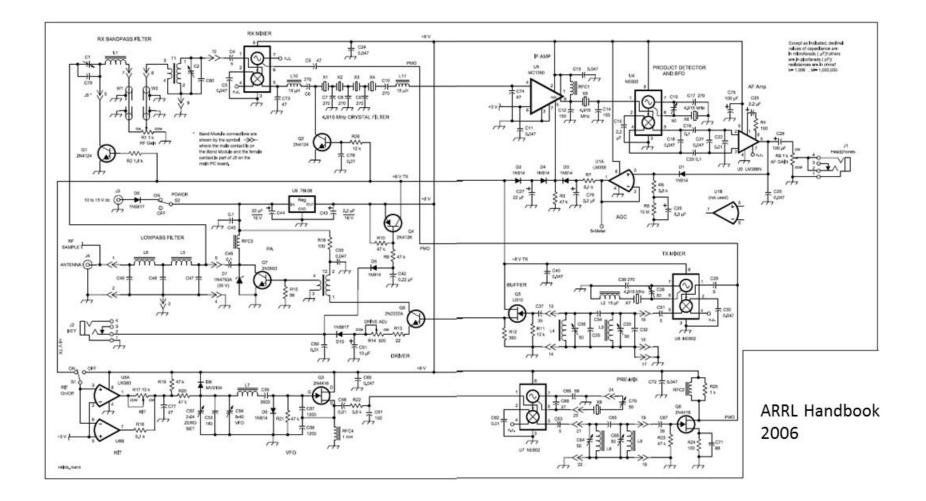
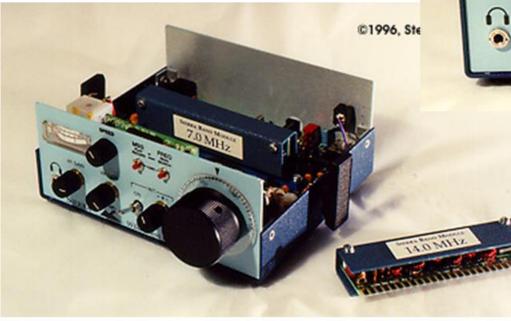
A homebrew QRP Transceiver



Lots of Fun & Lessons Learnt


Background

- In 2008 I was transferred to a new location.
- I could bring 2 suitcases along and spent 5 months in an apartment until the container with all my stuff arrived. Finally!
- Enough time for reading though the complete ARRL handbook in detail.


NorCal Sierra: ARRL Handbook

Sierra: Schematic

The "Sierra" by Wilderness Radio

- All band CW transceiver
- Superhet, VFO
- Dig display & key options
- Removable band modules
- Rivals quality of rigs 5x \$
- ARRL Hndbk cover '96

Idea: Why not make an own rig?

- Challenge: a homebrew TRX
 - No simple copy n paste approach
 - Some modifications of original circuit
 - Target: performance
 - No thrills n whistles (at least in first stage)
- 15 meter band
 - DX band
 - antenna size / performance

Some requirements

- Use of junk box parts
 - Chassis
 - Laptop power supply
 - Variable capacitor
 - DBM
 - Heat Sinks
- Construction techniques:
 - Manhattan, Dead bug, SMT..

Basic Design: simple

Increasing Complexity

Direct Conversion

(V)XO

Superhet single conversion VFO CW only MGC AF filtering

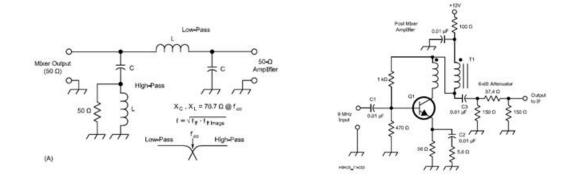
multiple conversion

Synthesizer

SSB FM, AM

AGC

IF filtering


NB, S-Meter digital display

Modifications: some details

- Frontend : RF preamp / DBM / diplexer / IF amp instead of active NE602 mixer
- 3 pole Xtal filter
- audio filter: switchable bandwidth
- AF amplifier
- Frequency management: down conversion
 - VFO: 3.28-3.44 MHz PMO: 16.08- 16.24 MHz
 - PMO-Xtal 12.8 MHz IF: 4.9152 MHz (Sierra, K2)
- PA: IRF 510 FET 3.5 W output
- RX/TX switching with relay

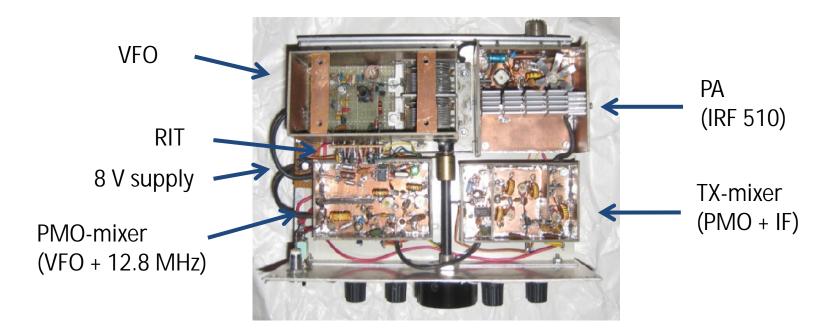
Replacement - Complexity

- Replacement of active NE 602 mixer by a DBM
 - DBM: passive mixer with conversion loss
 - i.e. additional amplifier stage needed
 - Resizing of filter / diplexer frequencies
 software simulation, experimental verification

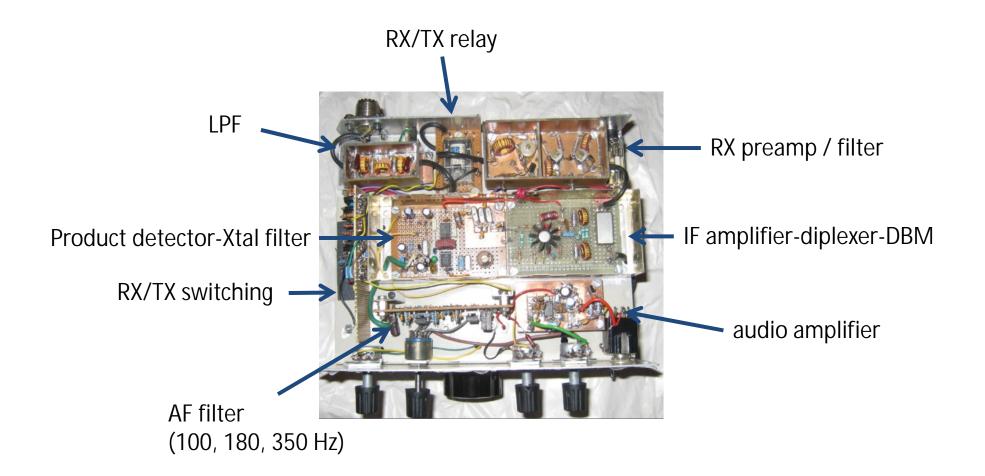
Test gear

- Oscilloscope
- Receiver
 - detection of spurs, oscillator drift...
- and some homebrew equipment
 - Dummy load / power measurement
 - Oscillator for Crystal measurements (Xtal filter)
 - Sweep frequency generator (filter measurements)
 - Capacity and inductance meter

Summary

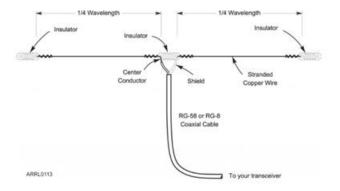

- What looks quite easy on paper too often turns out to be "somewhat" more complex in reality
- Combining circuit boards too often takes more time than soldering together the boards
- Grounding has an effect / some circuits don't want to work

1 year later: the Outcome



Single band **CW** Transceiver 21.00 - 21.16 MHz Receiver: Single conversion superhet RIT Variable RF gain 500 Hz IF Xtal filter Switchable audio filter Transmitter: 3.5 Watt output

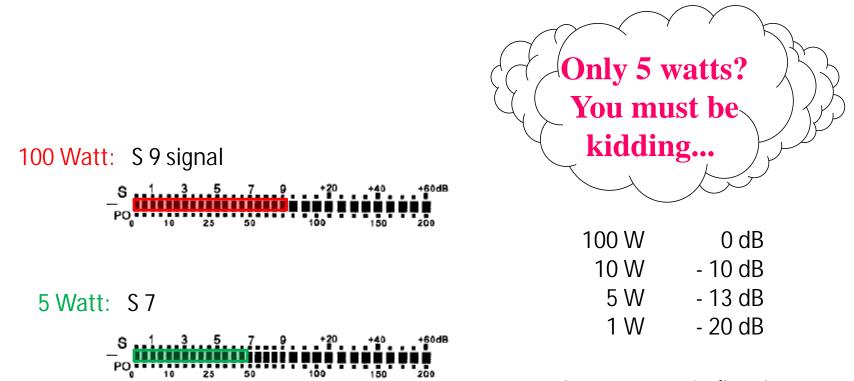
Insights: The top


At the bottom

Crucial: Antenna

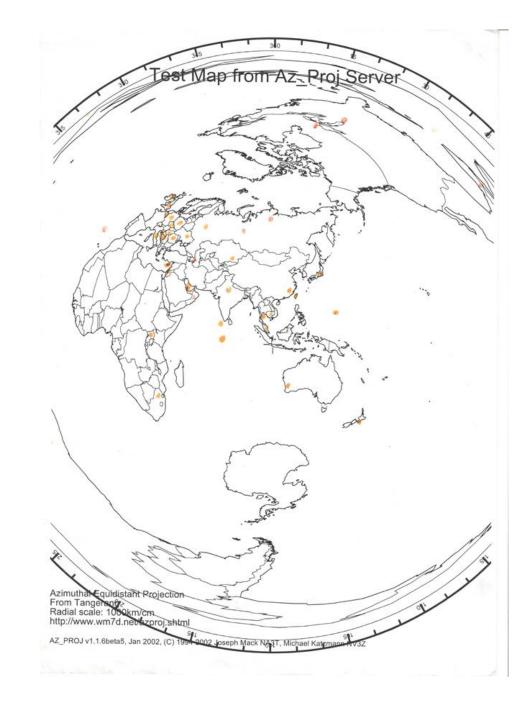
coax fed sloping dipole

- From 1st floor window (≈ 5.5 m)
- to bamboo stick $(\approx 2.5 \text{ m})$



What is "QRP?"

- A telegraphy Q-signal
 - "QRP" = To lower ones power
 - "QRP?" = Can you lower your power?
- QRP Operation
 - CW: 5 Watt RF output power (or less!)
 - SSB: 10 Watt PEP
- QRPP / miliwatting
 - < 1 Watt output


Some theory: 5 % of 100 W.....

S-meter: 1 unit ð 6 dB

Operation with 3.5 W

- Within ½ year more than 50 countries from YB
- From "round the corner" to real DX
- HR, OY, 5X, CT3, ZC4, 4K, A6, A7, GI, VE3, K2, 5Z (No contest QSO's!)
- Short band openings (3/4 h) to Europe almost every day i.e. 0.3-0.4 W / 1000 km
- Several 2 way QRP contacts A4, RA1, DL, JA
- Learning: Improved own operational skills

Have a Try – First steps

- Play with attenuator button:
 16 dB correspond to power reduction 100 W 4 W
- Listen on QRP frequencies
- Test: reduce transmitting power
 Are you still heard?

CW	SSB
1810	
3560	3985
7040 (7030)	7285
10106 (10116)	
14060	14285
21060	21385
24900	24950
28060	28885
50060	50885

• Less interference -> happy neighbours

Another toy of my shack

- rather simple design
- nevertheless High Performance
- several options: 100 W PA, tuner, digital filter

Some References/Links

<u>www.qrparci.org</u> <u>www.qrpproject.de</u> (also in English!) <u>www.qrp.pops.net</u>

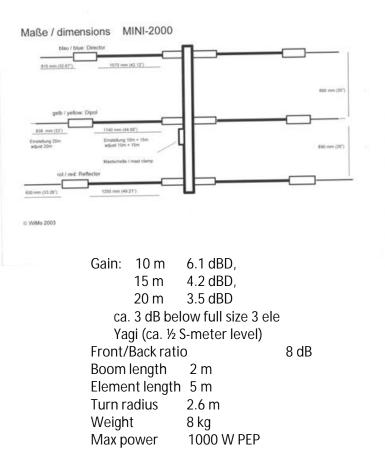
Frank W. Harris, KØIYE 2006: CRYSTAL SETS TO SIDEBAND A Guide to Building an Amateur Radio Station W1FB's QRP Notebook

ARRL Handbook Experimental Methods in RF Design

High End Homebrew

160-2 m, QEX 1999 Mark Mandelkern, K5AM

HBR-2000, QST 03/2006 Markus Hansen VE7CA


Table 1 HBR-2000 Test Measurements			
Image rejection all bands: Spacing: Two-tone blocking dynamic range: Third-order intermodulation dynamic range: Third-order intercept:	>135 dBm. 20 kHz >126.0 dB 103.5 dB 25.5 dBm	102.5 dB	2 kHz 122.0 dB 93.0 dB 14.5 dBm

Next on the agenda

- August/September: QRT in 9V
- Later on: QRV from YB land

Garage Sale

Heathkit SB 221 2 x 3-500Z Triodes 80, 40, 20, 15 m bands Drive: 90 W Output: > 1 kW